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The “Grothendieck Conjecture” in the title is, in a word, a conjecture to the effect that
the arithmetic fundamental group of a hyperbolic algebraic curve completely determines the
algebraic structure of the curve. Research concerning this problem was begun at the end of the
1980’s by the first author (Nakamura), given significant impetus (including the case of positive
characteristic) by the second author (Tamagawa), and brought to a final solution by means of
a new p-adic interpretation of the problem due to the third author (Mochizuki).

In this paper, after briefly reviewing the background and history of the problem, we would
like to report on how the Conjecture was gradually brought to a solution by the work of the
three authors.

§1. The Arithmetic Fundamental Group — a Bridge between Algebraic Geometry
and Group Theory —

§1.1. The Étale Fundamental Group

As is well-known, the usual “topological fundamental group” is a so-called homotopy invari-
ant, i.e., invariant with respect to continuous deformations of shape. For instance, in the case
of a compact complex algebraic curve, the only invariant of the curve determined by its topo-
logical fundamental group is its genus. Thus, taken alone, the topological fundamental group
cannot possibly be a sufficiently fine invariant to distinguish the algebraic structure of different
algebraic curves. Indeed, the “arithmetic fundamental group” appearing in the Grothendieck
Conjecture is a notion which is naturally defined — as an extension of the notion of “Galois
group” — by means of the notion of “étale (i.e., as opposed to topological) fundamental group”
introduced by A. Grothendieck.

This notion of “étale fundamental group” was introduced into algebraic geometry in the
1960’s in [SGA1] as an accounting device to keep track of the “Galois theory of schemes.”
According to [SGA1], given a geometric point x̄ on a connected scheme X, the étale fundamental
group π1(X, x̄) is defined as a group of permutations of a system of “sets of solutions” as follows:
As Y ranges over all of the finite étale coverings (in the following, we shall frequently abbreviate
this expression by the phrase “finite coverings”) of X, the fiber sets Y (x̄) over the geometric
point x̄ form a projective system of finite sets. Then π1(X, x̄) is defined as the group formed by
all the self-permutations of this system that arise geometrically. Observe that, since it arises
as the projective limit of permutation groups of the various finite sets Y (x̄), this group admits
a natural structure of profinite topological group1). Since one knows that the isomorphism
class (as a topological group) of the étale fundamental group does not depend on the choice
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of base-point x̄ appearing in the definition, in discussions where one is only concerned with
the group-theoretic structure of the étale fundamental group, we shall frequently omit the
base-point and write π1(X).

Given an arbitrary finite covering Y → X, the set Y (x̄) defines a continuous finite permuta-
tion representation of π1(X, x̄); moreover, this correspondence (that associates the permutation
representation Y (x̄) to the covering Y → X) defines a categorical equivalence between the cate-
gory of finite coverings of X and the category of continuous finite permutation representations
of π1(X, x̄). In particular, (when Y is connected) the stabilization group at each point of
Y (x̄) determines a (conjugacy class of) open subgroup(s)2); conversely, an open subgroup H of
π1(X, x̄) determines (an equivalence class of) finite connected covering(s) Y → X correspond-
ing to the permutation representation on the set of left cosets of π1(X, x̄) with respect to the
subgroup H. This correspondence H ↔ Y appears frequently in the discussions to come, so
we will denote corresponding objects by the notation Y = Y H , H = HY . In particular, one
has the fundamental observation that HY is none other than the fundamental group π1(Y ) of
Y itself.

When the scheme X is a point, especially, when it is the spectrum Spec (K) of a field K,
the fiber set Y (x̄) of a connected finite covering Y is none other than the set of solutions of
the algebraic equations defining Y , and the fundamental group π1(Spec (K)) may be identified
with the absolute Galois group Gal(K) def= Gal(K/K), i.e., with the collection of “permutations
of solutions” of all possible algebraic equations. (Here, K denotes the separable closure of K.)

In general, when one is given a morphism of schemes f : X1 → X2 and a geometric point x̄1

on X1, if one denotes the image of x̄1 in X2 by x̄2, then one obtains an induced homomorphism
π1(X1, x̄1) → π1(X2, x̄2). Indeed, the pull-back to X1 (i.e., the fiber product with X1 over the
base X2) of the finite étale covering Y → X2 is a finite étale covering Y ′ → X1 over X1,
and, moreover, one always has Y (x̄2) ∼= Y ′(x̄1). Thus, one obtains the above homomorphism
of fundamental groups by simply restricting the corresponding homomorphism of systems of
permutation groups. If one changes the base-point x̄1, the resulting homomorphism of fun-
damental groups is equivalent to the previous one (by an appropriate commutative diagram).
Thus, in the following, we shall frequently omit mention of the base-point and simply write
π1(X1) → π1(X2).

When X is an algebraic variety defined over a field K, the natural morphisms X → Spec (K)
and Spec (K) → Spec (K) induce a morphism XK → X (XK

def= X ×K K). Moreover, one has
an exact sequence of fundamental groups

(1.1) 1 −→ π1(XK) −−−−→ π1(X)
prX−−−−→ Gal(K) −→ 1

arising from these morphisms. The group π1(XK), which forms the kernel of the projection
prX , is called the “geometric” fundamental group of X. In the case when K is of characteristic
0, this group is isomorphic to the profinite completion (i.e., the projective limit of all the finite
quotients) of the usual topological fundamental group of the corresponding complex manifold.
Thus, in particular, it is invariant with respect to deformations3). It is then natural to inquire
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as to how the “arithmetic” fundamental group π1(X) varies as an extension of Gal(K) (cf.
(1.1)), as one deforms X.

In the above exact sequence (1.1), π1(XK) is a normal subgroup of π1(X), hence determines
a homomorphism π1(X) → Aut(π1(XK)) (by conjugating the subgroup π1(XK) by elements
of π1(X)). This homomorphism clearly maps π1(XK) into the group of inner automorphisms
of π1(XK). Thus, by taking quotients, one obtains a homomorphism — called an outer Galois
representation —

(1.2) ρX : Gal(K) → Out(π1(XK))

from Gal(K) to the outer automorphism group Out(π1(XK)) of the geometric fundamental
group. Just now we defined ρX : Gal(K) → Out(π1(XK)) starting from prX : π1(X) → Gal(K)
by means of purely group-theoretic operations. Conversely, when the center of π1(XK) is trivial,
one can recover prX from ρX by means of purely group-theoretic operations. For instance, in
the case of a hyperbolic algebraic curve (i.e., a smooth algebraic curve such that if g is its genus,
and n is the number of points “at infinity,” then (g, n) �= (0, 0), (0, 1), (0, 2), (1, 0)) defined over
a field of characteristic 0, the geometric fundamental group is isomorphic to either a nonabelian
free group or the profinite completion of a (nonabelian) surface group, hence well-known to be
center-free, so the above observation applies in this case. In this sort of situation, to consider
“the outer Galois action ρX on π1(XK)” is equivalent to considering “the group π1(X) as an
extension of Gal(K).”

§1.2. Grothendieck’s Anabelian Conjectures

In [G1-3], Grothendieck set forth a collection of conjectures based on his intuition that for
varieties X which are “anabelian” (a vaguely defined class of manifolds that includes hyperbolic
algebraic curves) and base fields K which are finitely generated over the prime field, the
structure of π1(X) as an extension of Gal(K) (cf. (1.1)) should be sufficient to control the
geometry of X.

Most notable among this collection of conjectures was the following general assertion, which
Grothendieck referred to as the “Fundamental Conjecture of Anabelian Algebraic Geometry.”

(GC1) “Fundamental Conjecture.”
An anabelian algebraic variety X over a field K which is finitely generated over a prime

field may be “reconstituted” from the structure of the arithmetic fundamental group π1(X) as
a topological group equipped with its associated surjection prX : π1(X) → Gal(K).

Here, the term “anabelian algebraic variety” means roughly “an algebraic variety whose
geometry is controlled by its fundamental group, which is assumed to be ‘far from abelian.’ ”
This term was invented by Grothendieck. Since he refrained from giving a precise definition of
this term in arbitrary dimension (i.e., for varieties of dimension > 1), and, moreover, used the
term “reconstituted” in a similarly ambiguous fashion, it is to this day not clear precisely for
which varieties the conjecture was asserted to hold in higher dimensions4). For algebraic curves
in characteristic 0, however, Grothendieck himself made the following explicit conjecture:
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(GC2) The “Hom Conjecture.” For hyperbolic algebraic curves X, Y over a field K which
is finitely generated over the rationals, the natural map

HomK(X,Y ) → HomGal(K)(π1(X), π1(Y ))/ ∼
defines a bijective correspondence between dominant K-morphisms and equivalence classes of
Gal(K)-compatible open homomorphisms (modulo composition with an inner automorphism
induced by an element of π1(YK)). (In other words, open homomorphisms of the fundamental
group always arise from algebro-geometric morphisms.)

As Grothendieck himself observes, the above conjecture bears some resemblance to the Tate
Conjecture (proved by G. Faltings [F1]) concerning the 1-dimensional étale homology groups
of abelian varieties:

HomK(A,B) ⊗ Ẑ ∼= HomGal(K)(H1(AK , Ẑ),H1(BK , Ẑ))

(Here, A and B are abelian varieties defined over a global field K, and Ẑ is the profinite
completion of Z.) Moreover, if one applies the Tate Conjecture together with the “isogeny
theorem” (as well as the Shafarevich Conjecture, etc., which were proven by Faltings along with
the Tate Conjecture) to the Jacobian variety of the curves in question, it follows immediately
that there are only finitely many curves with homology group H1 isomorphic (as a Galois
module) to the H1 of a given proper algebraic curve of genus ≥ 2. If one observes that H1

is just the abelianization of π1, then one may regard the Fundamental Conjecture (GC1) as
the assertion that, if one increases the data that one is given from just the homology group
to the entire fundamental group, then the number of possibilities for a curve possessing the
same invariant (i.e., the same π1) is narrowed down from some unknown finite number to “just
one.” In fact, even effective versions of this sort of finiteness theorem (i.e., the Shafarevich
conjecture, etc.) tend (with few exceptions5)) to give only inordinately large estimates for
the number of such possibilities. Thus, from this point of view, there is quite a substantial
gap between Grothendieck’s conjectures (GC1), (GC2) and the Tate Conjecture applied to the
Jacobian varieties of the curves in question. Grothendieck argued, in support of his conjecture,
that the arithmetic fundamental group π1(X) possesses an “extraordinary rigidity,” i.e., that
the outer action (1.2) of its “arithmetic quotient” Gal(K) on its “geometric portion” π1(XK)
should be “extraordinarily rigid,” citing by way of comparison the nontriviality of the Galois
representations arising from cohomology theory which were studied by A. Weil and P. Deligne
([G3]).

Finally, among (unsolved) conjectures which may be rigorously formulated, one interesting
conjecture is the following “Section Conjecture.” A K-rational point x ∈ X(K) of an algebraic
variety X over K may be regarded as a section x : Spec (K) → X of the structure morphism
X → Spec (K). Thus, a K-rational point x induces a (π1(XK)-conjugacy class of) section
homomorphism(s) αx : Gal(K) → π1(X) which splits the fundamental exact sequence (1.1)
discussed above.

(GC3) The Section Conjecture. For an X/K as in (GC2), every section homomorphism
α : Gal(K) → π1(X) of the projection prX : π1(X) → Gal(K) arises either from a K-rational
point of X (in the usual sense), or from the K-rational points “at infinity”6) of X.
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We will discuss the (tangential) sections arising from the points at infinity in the following
§. With respect to the Hom Conjecture, Grothendieck ([G2]) also mentions7) the possibility of
extending the conjecture to the case where X is an arbitrary smooth algebraic variety and Y is
an “elementary anabelian variety” (i.e., a variety obtained as the successive smooth fibration
of families of hyperbolic curves). In this context, the Section Conjecture may be regarded as
a variant of the Hom Conjecture where “X” is replaced by the spectrum of the base field8).
Grothendieck also considers the case where X and Y are replaced by the spectra of function
fields and conjectures that a “birational version of the anabelian conjecture”9) holds in this
case.

§1.3. Concerning the Arithmetic Fundamental Group

In his writings ([G1-3]), Grothendieck also discourses on various dreams of his ranging from
the possibility of treating algebraic curves over number fields as graphs on topological surfaces
(“dessins d’enfant”) to the explicit description of the close relationship between the arithmetic
fundamental groups of various moduli spaces of curves, to the possibility of revolutionizing the
concept of a “space” by means of a new categorical point of view. On the other hand, G. V.
Belyi’s result ([B]) as the end of the 1970’s to the effect that the outer Galois representation
(1.2) in the case K = Q, X = P1 − {0, 1,∞} is injective drew the attention of a large number
of mathematicians as a classical example of the highly nontrivial relationship between Galois
groups and fundamental groups. Ever since the appearance of this result, various research
topics and unsolved problems arising both from [G1-3] and from other independent sources
gradually came to be recognized as being related and continue to this day to be the focus of
active research (e.g., the inverse Galois problem, mixed motives, adèlic special functions, the
Grothendieck-Teichmüller group, etc.). With regard to the numerous important issues and
recent developments concerning these topics, we apologize that due to the lack of space, we are
unable to discuss these topics in detail in this paper, and instead restrict ourselves to quoting
several reference books ([1–6]) and surveys ([I2], [H]). One may think of the “Grothendieck
Conjecture” which is the topic of the present paper as being simply a branch – of a somewhat
conceptual hue – on the great tree of numerous research topics (as discussed above) concerning
the arithmetic fundamental group.

§2. From Finiteness Theorems to Rigidity Theorems
(mainly the case X: genus 0, K: number field)

§2.1. The Theorem of Anderson-Ihara

Any approach to the Grothendieck Conjecture must begin by addressing the question of
precisely where in the extension structure (1.1) of the arithmetic fundamental group, or, alter-
natively, in the outer Galois representation (1.2) arising from this extension, one should look
to find some sort of reflection of the algebraic structure of the original space. Now when one
fixes a prime number l, the outer Galois representation (1.2) also naturally induces an outer
action

ρ
(l)
X : Gal(K) → Out(π(l)

1 (XK))
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on the maximal pro-l quotient group10) π
(l)
1 (XK) of π1(XK). In the 1980’s, building on his

previous work, Yasutaka Ihara ([I1]) initiated research on the pro-l outer Galois representation
associated to X = P1 − {0, 1,∞}, independently of Grothendieck and Deligne. This research
led to the elucidation11) of the deep arithmeticity (especially, the relationship to Jacobi sums
and circular units) of this outer Galois representation. Moreover, Ihara’s success spurred
researchers12) — mainly in Japan — to work on applications as well as generalizations to
various other curves of Ihara’s work.

Already by the late 1980’s, the following fact came to be known as a theorem of G. Anderson-
Ihara ([AI]). For a finite set Λ ⊂ P1(K) that contains 0, 1,∞,

Theorem (Anderson − Ihara). The fixed field K
(l)
X of the kernel of the pro-l outer Galois

representation ρ
(l)
X associated to a genus 0 curve X = P1

K − Λ is the extension field of K
obtained by adjoining to K all of the algebraic numbers arising by repeating the operations of
taking the cross-ratio and l-th root.

This theorem gives a description of the subfield K
(l)
X of K which arises naturally from

the pro-l outer Galois representation ρ
(l)
X by means of a system of “numbers” generated by

a fixed procedure from the coordinates of the set Λ ⊂ P1(K) of ramification points. From
another point of view, this theorem may be regarded as giving an explicit construction, for
each prime number l, of group-theoretic invariants (i.e., the system of numbers referred to
above) with values in the subfield K

(l)
X of K, using nothing more than the structure of the

arithmetic fundamental group π1(X) as a Gal(K)-extension. Nakamura’s idea was to approach
the Grothendieck Conjecture by constructing, in a more systematic fashion, invariants of the
arithmetic fundamental group which are defined as subfields of K like those above in such a
way that these invariants would serve to distinguish distinct genus 0 algebraic curves more
effectively.

§2.2. A Group-Theoretic Description of Galois Permutations

The point of the method of Anderson-Ihara is to translate the pro-l outer Galois represen-
tation on π1(P1 − Λ) into the language of Galois permutations of the “pro-cusp points” over
Λ distributed on the “rim” of the pro-l universal covering of P1 − Λ; this serves to reduce
the issue of understanding the outer Galois representation to the more manageable task of
understanding the Galois permutations of the cuspidal points lying on the genus 0 covers of
P1 − Λ. Thus, we shall first consider how to translate the phenomenon of “cuspidal points of
a finite covering which are permuted by Galois” into group-theoretic language that is phrased
entirely in terms of the group extension structure of the arithmetic fundamental group.

In general, let X be an affine hyperbolic curve (of arbitrary genus) defined over K, and let
Y be a finite covering of X; Y ∗ its nonsingular compactification. Then the set of cuspidal
points of Y is the set ΣY

def= Y ∗ − Y . First of all, the natural field of definition of the covering
Y may be obtained as the field KY fixed by the image of the open subgroup HY = π1(Y )
(corresponding to the covering Y ) under the projection prX : π1(X) → Gal(K). Next, the
geometric fundamental group of Y may be recovered as the intersection HY ∩π1(XK). If gY is
the genus of Y ∗, and nY is the cardinality of ΣY (K), then this geometric fundamental group
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is a nonabelian free profinite group of rank 2gY + nY − 1. Taking the maximal pro-l abelian
quotient of this group then gives the l-adic étale homology group H1(YK ,Zl) (= π

(l)
1 (YK)ab);

moreover, by conjugation, one sees that one obtains a structure of Gal(KY )-module on this
homology group. Now since the cyclotomic permutation representation13) on the set of cuspidal
points (almost) includes into this homology group (as a submodule of rank nY − 1), it suffices
to recover this submodule group-theoretically. That one can, in fact, do this is guaranteed by
the Riemann-Weil Conjecture. Indeed, the quotient module of H1(YK ,Zl) by the “cuspidal
part” in question is of rank 2gY and is, in fact, isomorphic to the l-adic Tate module (made
up of the l-power torsion points) of the Jacobian variety of Y ∗. The Riemann-Weil conjecture
asserts that the radii of the eigenvalues (i.e., the “weights”) of the Frobenius action arising
from the action of Gal(KY ) on this Tate module are of a different size from the eigenvalue(s)
arising from a cyclotomic action. Thus, the cuspidal part of H1(YK ,Zl) may be distinguished
from the rest of H1(YK ,Zl) group-theoretically.

§2.3. Finiteness Theorems ([N1])

Now let us consider, for instance, those Galois coverings Y of X = P1
K − Λ (Λ ⊃ {0, 1,∞})

whose field of definition is the field K( N
√

1) and whose Galois group over XK( N√1) is equal to
(Z/NZ)|Λ|−1. If one then computes the intersection, ranging over Y as above and all prime
numbers l, of the fixed fields of the kernels of the Galois representations on the cupidal parts
of each H1(YK ,Zl), one obtains the field K((λ − λ′)1/N | λ, λ′ ∈ Λ − {∞}). This field is
an invariant which can be group-theoretically extracted from the surjection prX : π1(X) →
Gal(K), whenever a natural number N is given. If, moreover, one lets N vary, then it follows
from a simple Kummer theory argument (together with the fact that the group of units of
a number field is finitely generated) that the subgroup generated inside the multiplicative
group K× by the finite set {λ − λ′ | λ, λ′ ∈ Λ − {∞}, λ �= λ′} is also, therefore, a group-
theoretic invariant. This invariant shows, among other things, that (up to linear fractional
transformations) there are only finitely many subsets Λ ⊂ P1(K) that give rise to the same
arithmetic fundamental group, as well as that, in the case of certain special number fields
K, the (outer action on the meta-abelianization of the geometric) fundamental group already
determines a curve of the form P1 − { ４ points}.
§2.4. Rigidity Theorems

In order to use the information arising from the Galois permutations of the cuspidal points
more efficiently, this time we would like to consider the information that one obtains from the
cuspidal part ⊂ H1((Y H)K ,Zl) of the homology of the covering Y H associated to H, where
we let H vary, as a parameter, among all the open subgroups of π1(X). (As was stated in
§2.2) this cupsidal part may be characterized by the weight filtration. Thus, if one considers
the union of the cyclic subgroups I of π1(XK) that land inside the cuspidal part of the l-adic
homology (for all prime numbers l) of all open subgroups H of π1(XK) that contain I, then
one obtains a subset of π1(XK) which may be constructed entirely group-theoretically from
the Gal(K)-extension group π1(X).

One can show that this subset is precisely the union of (all conjugates of) the “cuspidal
isotropy subgroups,” that is to say, the union of all the inertia groups (∼= Ẑ) inside π1(XK)
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at the points at infinity of X (i.e., the cuspidal points of X itself) — cf. the “anabelian
weight filtration” of [N2,4]. One can then recover the decomposition groups inside π1(X) as
the normalizers of the inertia groups. The section homomorphisms α : Gal(K) → π1(X)
of the projection prX : π1(X) → Gal(K) whose images lie inside a decomposition group
are then called the tangential sections arising from the K-rational points at infinity of X.
Among those section homomorphisms that are at issue in Grothendieck’s Section Conjecture
(GC3), those arising from the K-rational points at infinity may thus be given a group-theoretic
characterization in this way.

Now since we have given a group-theoretic characterization of the set of inertia groups (as
well as the corresponding decomposition groups), if, for instance, we are given an isomorphism
π1(X1) ∼= π1(X2) over Gal(K) between the arithmetic fundamental groups of two curvess X1

and X2 over K, then this group isomorphism must automatically preserve the set of inertia
groups, as well as the residue fields of the various corresponding points at infinity (since these
residue fields are just the fixed fields of the image under prX of the corresponding decomposition
group in Gal(K)). Therefore, if X1 may be embedded in X ′

1, then X2 may also be embedded in
some X ′

2 such that π1(X ′
1) ∼= π1(X ′

2). In particular, the problem of reconstructing (from their
arithmetic fundamental groups) curves P1 − {n points} of genus 0 (where n is arbitrary) may
be reduced to the case where n = 4. If, moreover, one uses the fact that one can specify those
geometric cyclic covers that ramify only at two points entirely in the language of fundamental
groups and inertia groups, one sees that by applying the method of [N1], one can extract (as
an invariant of π1(P1 −{0, 1,∞, λ})) the triple 〈λ〉, 〈1− λ〉, 〈 λ

λ−1 〉 of multiplicative subgroups
of K×. This is, in fact, sufficient to characterize the isomorphism class of P1 −{0, 1,∞, λ}. In
this way, one can show that hyperbolic algebraic curves of genus 0 over a field which is finitely
generated over Q may be “reconstituted” from their arithmetic fundamental groups ([N2]).

Moreover, since the characterization of inertia groups may be applied even to the pro-l fun-
damental groups of affine curves of arbitrary genus, the possibility thus arose of approaching a
version of the Grothendieck Conjecture reformulated for the pro-l fundamental group “quanti-
tatively” via the lower central series (of the pro-l fundamental group). In particular, when one
specializes this to the problem of computing the group of (Galois-compatible) automorphisms
of the pro-l fundamental group, one can to some extent systematically obtain affirmative re-
sults by combining one’s knowledge of the pro-l outer Galois representations of curves of higher
genus and their configuration spaces by means of a method involving various filtrations (cf. the
survey [N7], as well as [NTs],[NTa],[MT], etc.). One can regard this problem of reconstructing
the automorphism groups of curves from the groups of Galois-compatible automorphisms of
their geometric fundamental groups as a preliminary first step to the isomorphism version of
(GC2). However, in order to obtain a more decisive breakthrough, one had to first wait for the
work of Tamagawa (§3).

Incidentally, this procedure that we carried out above for the tangential sections arising
from the points at infinity, i.e., of
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Distinguishing group-theoretically those section homomorphisms
α : Gal(K) → π1(X) of the extension group structure prX : π1(X)
→ Gal(K) of the arithmetic fundamental group of an algebraic curve
that arise geometrically.

may also be seen in the later work of Tamagawa and Mochizuki. Moreover, in the course
of carrying out this procedure, it became standard in this later work to apply the method
by “compiling in an anabelian fashion” the arithmetic-geometric data included in the étale
cohomology groups of the covering curves Y H that arise when one allows H to vary as a
parameter among all the open subgroups of π1(X). On the other hand, the issues of just what
geometric information one extracts from the étale cohomology of Y H in the various arithmetic
settings that arise (in the later work of Tamagawa and Mochizuki), and how one compiles
this information in order to arrive at the final result are highly nontrivial problems which
required more sophisticated technology and fresh ideas to solve. In the following sections, we
will discuss the development of the ideas of Tamagawa and Mochizuki that were applied to
solve these problems in various specific arithmetic settings. In order, however, to allow even
non-specialist readers to get a taste of the evolution of the common issues that underlie these
developments, we will attempt to proceed, step by step, in as pedestrian a fashion as is possible.

§3. The Grothendieck Conjecture and the Fundamental Groups of Algebraic
Curves in Positive Characteristic

§3.1. The Grothendieck Conjecture over Finite Fields

In this §, we let k be a finite field, and X a (nonsingular) affine curve over k. One of the
main results of Tamagawa ([T1]) states that the scheme X may be recovered from π1(X) (more
precisely, this is an analogue of the isomorphism version of (GC2)). The proof of this result
is modeled on the work of K. Uchida ([U]), who showed that the function field k(X) may be
recovered from its absolute Galois group Gal(k(X)), and may be roughly divided into three
steps:

(i) the group-theoretic characterization of the decomposition groups of each closed point of
X∗;

(ii) the reconstruction of the multiplicative group k(X)×；

(iii) the reconstruction of the additive structure on k(X) = k(X)× ∪ {0}.
Here, just as in §2, we denote the nonsingular compactification of X by X∗.

In Step (i), Uchida used an idea of Neukirch involving Brauer groups, but in our case, since
the inertia groups of the closed points of X are trivial, the decomposition groups of these points
are isomorphic to the absolute Galois group of their residue fields (which are finite fields), hence
have no (nonzero) H2. Thus, we shall use instead an idea that we explain in the following.

First, observe that each closed point of X defines a continuous group homomorphism

αx : Gal(k(x)) = π1(Spec (k(x))) → π1(X)
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such that prX ◦ αx coincides with the natural injection Gal(k(x)) ↪→ Gal(k), and that the
image of αx is the decomposition group of x. In particular, when x is a k-rational point, the
homomorphism αx determines a section of prX . Below, for simplicity, we shall concentrate on
this case (where x is k-rational). The problem then is to give a group-theoretic condition that
will guarantee that an arbitrary section homomorphism α of prX in fact arises as the αx of
some x ∈ X(k). (Observe that since Gal(k) ∼= Ẑ is a free profinite group, the precise analogue
of the Section Conjecture (GC3) could not possibly hold.) First, let us note that the condition
in question is equivalent to the following:

(∗)
For any open subgroup H of π1(X) that contains the image Im(α) of α, the set

of k-rational points Y H(k) of the corresponding covering Y H of X is nonempty.

Indeed, necessity follows immediately from the fundamental properties of the decomposition
group, while sufficiency follows from the following argument: Since any projective limit of
nonempty finite sets is itself nonempty, the (pro-)covering of X corresponding to the subgroup
Im(α) of π1(X) possesses a k-rational point. Hence, if one takes such a k-rational point of
this (pro-)covering and denotes the image of this point in X by x, one sees immediately that
α = αx. Thus, it remains to solve the problem of how to determine group-theoretically from
the arithmetic fundamental group whether or not (∗) holds, or, more generally, just when a
curve over a finite field k admits a rational point. This problem may be solved by using the
Lefshetz Trace Formula, which allows one to calculate the number (≥ 0) of rational points by
means of the action of the Frobenius element on l-adic étale cohomology (where l is a prime
number distinct from the characteristic of k). For the points at infinity x ∈ Σ def= X∗ − X, the
inertia group is nontrivial, so the section homomorphism αx into the decomposition group is
not uniquely determined; moreover, (unlike the case of points x ∈ X(k)) the image of αx is a
proper subgroup of the decomposition group. Nevertheless, in this case, as well, if one applies
a slightly modified version of the above argument, for each x ∈ Σ, one can group-theoretically
reconstruct the infinite set of all possible αx’s. Thus, one can reconstruct the decomposition
group of x as the subgroup of π1(X) generated by the union of the images of all possible αx’s.

Step (ii) is almost the same as in [U]: one uses the reciprocity law of class field theory,
applied to the function field k(X). Originally, the point of class field theory was to calculate the
abelianization of the Galois group of a field by means of some multiplicative groups arising from
the field; here, however, we view things in reverse, i.e., we think of the data of the multiplicative
groups associated to a field as being encoded inside the abelianized Galois group. Since we
have already reconstructed the decomposition groups associated to each closed point x of X∗

in Step (i), it thus follows from local class field theory that we have reconstructed (as the “Weil
group part” of the abelianization of the decomposition group), for x ∈ X, the group K̂×

x /Ô×
x

(∼= Z), and, for x ∈ Σ, the group K̂×
x , as well as the natural morphisms K̂×

x /Ô×
x → π1(X)ab

and K̂×
x → π1(X)ab. (Here, Ôx is the completion of the local ring OX∗,x, and K̂x denotes the

quotient field of this completion.) Thus, the Artin map
∏
x∈X

′
K̂×

x /Ô×
x ×

∏
x∈Σ

K̂×
x −→ π1(X)ab
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may also be reconstructed group-theoretically just from π1(X), hence the same may be said
of its kernel, which is simply the multiplicative group k(X)×. (Here, we use for the first time
that X is affine. If X = X∗, then we are only able to reconstruct the group k(X)×/k× of
principal divisors.)

Step (iii) is the most technically difficult step. First of all, observe that in Step (ii), we
reconstructed not only the multiplicative group k(X)×, but also the discrete valuation ordx :
k(X)× → Z associated to each closed point x of X∗, as well as (for x ∈ Σ) the (kernel of the)
reduction map Ker(ordx) = O×

X∗,x → k(x)×. Now in [U], one first reconstructs the additive
structure of the base field k (or of k̄), then (since “Σ = X∗”), by using the reduction map for
an infinite number of points, one reconstructs the additive structure of the function field from
the additive structure of the various residue fields. In our case, (since Σ is a finite set) this final
part of the argument does not work. Instead, one takes “lots” of “nice” functions f ∈ k(X)
(i.e., functions “like” the function t on X = P1

k − {0, 1,∞} = Spec (k[t, t−1, (t − 1)−1])); then,
by using the various special properties of the rational function field, one recovers the additive
structure of the subfield k(f) ⊂ k(X); and finally, by “gluing together” the additive structures
of these various subfields, one recovers the additive structure of the original function field k(X).

§3.2. From Finite Fields to Finitely Generated Fields

When X is, in addition, hyperbolic, the results and proofs which we explained in §3.1 remain
valid when one replaces the full (arithmetic) fundamental group π1(X) by the tame fundamental
group πtame

1 (X) (which is a quotient of π1(X)). In this §, we will explain how the isomorphism
version of the Grothendieck Conjecture (GC2) for affine hyperbolic curves over fields which are
finitely generated over the rational number field may be derived from our results concerning the
tame fundamental group of affine hyperbolic curves over a finite field. In §1.2, we pointed out
the analogy between the Tate Conjecture and the Grothendieck Conjecture, but in the case of
the Tate Conjecture, it seems highly unlikely that it is possible to derive Faltings’ Theorem via
a simple argument which does not involve genuinely global considerations from Tate’s Theorem
(which amounts to the Tate Conjecture over finite fields). This is one difference between the
arithmetic nature of these two conjectures (cf. also §4.1).

Since it is easy to derive the case over a finitely generated extension of the rational number
field from the case over a number field, in the following we shall consider the case where K is
a number field, and X is an affine hyperbolic curve over K. The problem is to show how to
recover group-theoretically the tame fundamental group of the reduction of X at each finite
prime of K from the arithmetic fundamental group of X itself. Here, a key role is played
by the fact that one can determine whether or not a hyperbolic curve over a local field has
good reduction by looking at whether or not the outer action of the inertia group (of the local
field) on the pro-l fundamental group (where l is a prime number which is distinct from the
characteristic of the residue field) is trivial. This fact is the analogue for hyperbolic curves
of the good reduction criterion of Serre-Tate for abelian varieties. (This group-theoretic good
reduction criterion for hyperbolic curves is due in the proper case to T. Oda ([O1,2]).)

Now we let v be a finite prime of K, Kv be the v-adic completion of K, Ov be its ring of
integers, and kv be its residue field. Then the absolute Galois group of Kv may be naturally
regarded as a subgroup of the absolute Galois group of K; moreover, the geometric fundamental
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group of X coincides with the geometric fundamental group of XKv
, so one may immediately

recover the arithmetic fundamental group π1(XKv
) of XKv

as pr−1
X (Gal(Kv)) (in the notation

of (1.1)). If we then apply to this arithmetic fundamental group the above criterion, we can
determine group-theoretically whether or not XKv

has good reduction. Thus, in the following,
we shall assume that XKv

has good reduction; then we let XOv
be the “good” model of

XKv
over Ov, and Xkv

be its reduction modulo the maximal ideal of Ov. Since, under these
circumstances, it is known that πtame

1 (Xkv
) and π1(XOv

) are naturally isomorphic, one may
identify πtame

1 (Xkv
) with the quotient π1(XOv

) of π1(XKv
). In order to recover this quotient

group-theoreticaly, it is sufficient to be able to determine group-theoretically, for every finite
étale (Galois) covering of XKv

, whether or not this covering can be extended to an étale
covering over XOv

. But by hyperbolicity, it follows that this is, in fact, equivalent to the (at
first sight weaker) condition that the covering curve also have good reduction; thus, one may
apply the preceding criterion to determine group-theoretically whether or not this condition
holds. From the above argument, it thus follows that whenever a hyperbolic curve X over a
number field K has good reduction at the prime v, one can reconstruct group-theoretically
the tame fundamental group of the reduction Xkv

(as a certain subquotient of the arithmetic
fundamental group of X).

Now if one is given an isomorphism π1(X1) ∼= π1(X2) over Gal(K) between the arithmetic
fundamental groups of two affine hyperbolic curves X1 and X2 over a number field K, then
from the above argument, one sees that one gets an induced isomorphism πtame

1 ((X1)kv
) ∼=

πtame
1 ((X2)kv

) at almost all of the primes v of K (i.e., those primes at which X1 and X2 have
good reduction). Thus, one obtains an isomorphism (X1)kv

∼= (X2)kv
from the above result

concerning the tame fundamental groups of affine hyperbolic curves over finite fields. On the
other hand, from the hyperbolicity of the curves (which implies, in particular, that the scheme
Isom of isomorphisms between the two curves is finite over the base), it follows that at almost
all v, one has:

Isom(X1,X2) ∼= Isom((X1)kv
, (X2)kv

)

which thus implies that X1
∼= X2. This completes the proof that one may derive the isomor-

phism version of (GC2) for affine hyperbolic curves over number fields from the result discussed
above concerning tame fundamental groups of affine hyperbolic curves over finite fields.

Moreover, in [M1], Mochizuki derives an isomorphism version of (GC2) for proper hyperbolic
curves over number fields from the above results on the tame fundamental group of affine
hyperbolic curves over finite fields. Here, the key theorem that connects these two results is an
isomorphism version of (GC2) for the “log fundamental group” of (nonsmooth) stable curves
over finite fields.

§3.3. The Geometric Fundamental Group of Algebraic Curves in Positive
Characteristic

In the case of characteristic 0, the isomorphism class of the geometric fundamental group
of a curve is determined solely by its genus g and the number n of points at infinity of the
curve, but this does not hold in positive characteristic. Indeed, in [T2], it is proven that the
isomorphism class (as a scheme) of a curve of genus 0 over Fp is completely determined by
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its (geometric) fundamental group. It is of interest to determine whether this sort of result
holds in general for arbitrary (hyperbolic) algebraic curves over an algebraically closed field
of positive characteristic, and whether or not an analogous result holds when “fundamental
group” is replaced by “tame fundamental group.”

§4. Motivation for the Version over Local Fields

§4.1. Global Fields and Local Fields

In §1, we introduced the Grothendieck Conjecture as a conjecture that concerns objects over
global fields, i.e., fields such as finitely generated extensions of the rational number field, which
have lots of primes. By contrast, Mochizuki’s series of papers ([M1-4]) introduced the new
point of view that one should in fact regard this conjecture as a p-adic analytic phenomenon
whose natural base is a local, not a global, field. The Grothendieck Conjecture over local
fields (§5.1), which was obtained by starting from this point of view, is a general result which
includes the original conjecture (GC2) formulated over fields which are finitely generated over
the rationals. Before we discuss this new point of view and the results that arose from it,
however, we would first like to examine the circumstances that existed prior to Mochizuki’s
work which led people to believe that the the natural base field for the conjecture should be a
global field.

(A) The Tate Conjecture for Abelian Varieties: As was discussed in §1, Grothendieck,
in the course of formulating his anabelian conjectures, pointed out the analogy between these
conjectures and the Tate Conjecture proved by Faltings ([F1]). This proof of Faltings, however,
uses in an essential way such global tools as the theory of heights over number fields, together
with the fact that, when one considers how the height varies under an isogeny of abelian
varieties, the contributions that arise from the finite and infinite primes occur in such a way as
to just cancel each other out. Moreover, unlike the case with number fields (and finite fields),
over such local fields as Qp, not only does the Tate Conjecture not hold, but, in many cases,
the gap between the two modules which are expected to be isomorphic is quite large. Thus, if
one takes the point of view that

“The Grothendieck Conjecture= The Tate Conjecture for Hyperbolic Curves”

then it is most natural to consider a conjecture such as (GC2) only over global fields.

(B) Applications to Diophantine Geometry: Among those mathematicians who were
involved with the anabelian philosophy in its early years, the Grothendieck Conjecture appears
to have been thought of as a new approach to Diophantine Geometry, i.e., to the study of
rational points on varieties over global fields. The following argument is representative of this
approach. Suppose that we wish to show that a certain algebraic variety has only finitely
many rational points. We then assume that there are infinitely many and attempt to derive
a contradiction by showing that any rational point arising as a “limit” of this infinite set of
rational points has various properties that are “too good to be true.” In order to carry out
this argument, however, one needs to know that the “limit” exists. Since a field like a number
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field is not complete with respect to any nontrivial topology, the existence of such a limit
is by no means clear. On the other hand, since Galois representations (as in (1.2)) are, in
some sense, analytic objects, it is comparatively easy to show that a sequence of such Galois
representations always has a convergent subsequence (i.e., a subsequence whose limit exists, as
a Galois representation). Thus, if one knows, as is asserted in the Section Conjecture (GC3),
that rational points and Galois representations (which satisfy certain conditions) are, in fact,
equivalent objects, then one can conclude the existence of a limit of a sequence of rational
points from the existence of the limit of the corresponding sequence of Galois representations.
If one refines this argument somewhat, then the possibility arises of deriving a new proof of the
“Mordell Conjecture”14) for algebraic curves of high genus from the Section Conjecture (GC3).
Thus, if one has in mind such essentially global applications as the preceding argument, then
it is most natural to consider the Grothendieck Conjecture only over global fields.

It was under these circumstances that the transformation of ideas “from global to p-adic
fields” was bought about by the work of Mochizuki. Below we would like to explain the point
of view that gave rise to this transformation.

§4.2. The Analogy with the Uniformization Theory of Hyperbolic Riemann
Surfaces

The thrust of the Grothendieck Conjecture is, in a word, that one can recover a hyperbolic
curve from its associated outer Galois representation (1.2), i.e., from:

The Geometric π1 of the Curve ＋ Some Natural “Arithmetic Structure” on this π1

In fact, if one forgets about the global nature of the base field and interprets the expression
“arithmetic structure” in a broad sense, then one sees that in fact a phenomenon analogous
to this conjecture was already known to mathematicians in the nineteenth century. This
phenomenon is the uniformization theory of hyperbolic Riemann surfaces.

If one is given a hyperbolic curve X over the complex number field C, then X defines a
Riemann surface X of hyperbolic type. Thus, the universal covering X̃ → X of this Riemann
surface X also admits a natural structure of Riemann surface. Now by the uniformization
theorem for Riemann surfaces, one knows that X̃ is holomorphically isomorphic to the upper
half-plane H

def= {z ∈ C | Im(z) > 0}. Thus, if one uses the fact that Aut(X̃ ) ∼= Aut(H) =
SL2(R)/{±1}, then one obtains a canonical representation (defined up to conjugation by an

element of SL2(R)/{±1})

(4.1) ρX : π1(X ) → SL2(R)/{±1}

from the action of the (usual topological) fundamental group π1(X ) of the Riemann surface X
on X̃ . Conversely, if one is given ρX , then the action of π1(X ) on the upper half plane H is
determined; thus, by forming the quotient of H by this action, one can recover the Riemann
surface X , as well as the original algebraic curve X, practically effortlessly. Well aware of these
circumstances in the world of complex analysis, and spurred on further by the observation that
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both the ρX of (1.2) and the ρX of (4.1) fit into the same pattern of “geometric π1 of the curve
+ some ‘arithmetic structure’ on this π1,” Mochizuki was led to pose the following question:

Is there a p-adic analogue of the phenomenon that one can (re)construct

X (every so directly and naturally!) from the representation ρX ?

In fact, the p-adic version of the Grothendieck Conjecture (Theorem 5.1) that we will discuss
below (§5) may be regarded as giving a sort of affirmative answer to this question15).

One classical method for concretely constructing the algebraic curve X from the action of
the geometric fundamental group π1(X ) on H is to manufacture differential forms on H which
are invariant under the action of π1(X ). If one can manufacture enough such differential forms,
then one can define a morphism

φ : H → PX

from the upper half-plane H to some sort of projective space PX . It follows immediately from
the general theory of complex manifolds that the image of this morphism is an algebraic variety;
moreover, in this case, (if one imposes a certain weak technical condition on X) it follows that
this image is, in fact, equal to X itself. This argument is the same as that which is used
to prove, when one constructs Shimura varieties as quotients of symmetric spaces, that these
quotients are, in fact, algebraic varieties. In summary, the main point of this sort of argument
is that although one may ultimately conclude that the differential forms that we use to define
φ are, in fact, algebraic, during the construction of φ, these differential forms exist only as
analytic objects on H. This point of view of “dealing with analytic presentations of algebraic
differential forms” will also play an important role in the proof of Theorem 5.1 which we will
discuss below.

§4.3. The Relationship to p -adic Hodge Theory

With regard to proving Theorem 5.1, the analogy with the theory over the field of complex
numbers which we discussed in the preceding § provides us with at least one clue, but in
order to actually realize this analogy in the p-adic world, one needs to employ fairly advanced
technology. This technology is provided by the p-adic Hodge theory ([F2]) of Faltings. That
theory which is referred to as “p-adic Hodge theory” has a long history going back to Tate’s
pioneering work in the mid-1960’s; what is important here, however, is the deep similarity
between this theory and the Grothendieck Conjecture. The main theme of p-adic Hodge theory
is the so-called “comparison theorem” between the étale cohomology (equipped with its natural
Galois action) and the de Rham cohomology of a variety over a p-adic field (such as a finite
extension field of Qp). In other words, the sense, or conjecture, that there should exist some
sort of “mysterious functor” that converts these two types of cohomologies into one another is
the starting point of p-adic Hodge theory. Here, de Rham cohomology is an invariant of the
variety obtained by compiling into a single complex the various properties of the polynomial
functions and differentials of such functions on X. Observe that the set of morphisms between
algebraic varieties which appears in the left-hand side of (GC2) belongs to the same world of
algebraic geometry (i.e., polynomial functions). On the other hand, the geometric fundamental
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group equipped with its outer Galois action, which appears on the right-hand side of (GC2),
is (if one ignores the difference between abelian and nonabelian), like the étale cohomology of
X, an important and natural invariant of the étale site of the variety X under consideration.
If one thinks about things in this way, then one sees that one may regard both the mysterious
functor conjecture and the various anabelian conjectures16) (such as (GC2)) as asserting that
some sort of “comparison theorem” — which realizes the philosophy

“Algebro-Geometric Structure ⇐⇒ Étale Topology + Galois Action”

— holds. Let us remark, however, that although there is this general sort of “categorical
similarity” between p-adic Hodge theory and the Grothendieck Conjecture, the gap between
“abelian” and “nonabelian/anabelian” is highly nontrivial. Bridging this gap was thus a major
technical obstacle that had to be surmounted in order to prove Theorem 5.1.

§5. The Grothendieck Conjecture over Local Fields

§5.1. The Main Theorem

In the following, we shall fix a prime number p, and we shall refer to any field which may
be realized as a subfield of a finitely generated extension field of Qp as a “sub-p-adic field.”
Typical examples of sub-p-adic fields are finitely generated extension fields of Q or Qp, as well
as (for each positive integer N) the field obtained by taking the composite (in some algebraic
closure of Q) of all degree N extension fields of the rational number field Q. (Note that this
last example will, in general, be an infinite algebraic extension of Q.) Mochizuki’s main result
([M3]) is the following theorem:

Theorem 5.1. For any smooth algebraic variety S and any hyperbolic curve X (both) over a
sub-p-adic field K, the natural maps

Homdom
K (S,X) → Homopen

Gal(K)(π1(S), π1(X))

→ Homopen
Gal(K)(π

(p)
1 (S), π(p)

1 (X))

are bijections. Here, Homdom
K denotes the “set of all dominant K-morphisms”; Homopen

Gal(K)

denotes the “set of all equivalent classes (relative to the action from the right of conju-
gation by π1(XK)) of open homomorphisms which are compatible with the projection to
Gal(K)”; and π

(p)
1 (V ) is the natural pro-p analogue of π1(V ), i.e., the quotient of π1(V ) by

Ker(π1(VK) → π
(p)
1 (VK)).

This theorem resolves conjecture (GC2) in a fairly strong form. In terms of the analogy
with uniformization theory discussed in §4.2, the left-hand side is the set of S-valued points
of X, i.e., the “physical entity” of the algebraic curve X, while the right-hand side is the
set of “points” which arise directly from the “analytic object” consisting of the geometric
fundamental group equipped with a certain arithmetic structure (i.e., the outer Galois action).
In other words, just as in the case of the uniformization theory of Riemann surfaces, Theorem
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5.1 asserts the equivalence of the physical entity defined by the hyperbolic algebraic curve and
the analytic geometric object arising directly from the geometric fundamental group equipped
with its arithmetic structure.

Moreover, as a corollary of a slight generalization (= Theorem A of [M3]) of Theorem 5.1,
one has the following birational version of the Grothendieck Conjecture:

Corollary 5.2. For regular function fields L and M of arbitrary dimension over a field of
constants K which is sub-p-adic, the natural map

HomK(M,L) → Homopen
Gal(K)(Gal(L),Gal(M))

is bijective. Here, HomK denotes the “set of ring homomorphisms over K”; and
Homopen

Gal(K) denotes the “set of equivalence classes (relative to the action from the right of
conjugation by Gal(M ⊗K K)) of open homomorphisms which are compatible with the projec-
tion to Gal(K).”

When the base field K is finitely generated over the rational number field, F. Pop proved an
isomorphism version of this result prior to [M3] using a completely different method ([P2]).

Remarks. (i) Theorem 5.1 is stated as a result concerning varieties and hyperbolic curves over
a field K, but in fact, a similar theorem to Theorem 5.1 holds if one takes for one’s base any
smooth algebraic variety over a sub-p-adic field (i.e., as opposed to just a sub-p-adic field, as
in Theorem 5.1), and then lets S and X be smooth families over B of algebraic varieties and
hyperbolic curves, respectively. In fact, such a result follows immediately (by observing that
the function field of such a B is again a sub-p-adic field) from Theorem 5.1.

(ii) Another consequence of Theorem 5.1 is an isomorphism version of (GC2) for algebraic
surfaces that may be obtained as the total space of a smooth family of hyperbolic curves over
a base space which is itself a hyperbolic curve. For more details, we refer to [M4].

§5.2. Sketch of the Proof of Theorem 5.1

Let us continue this discussion by restricting to the most essential case, where the base field
K is a finite extension of Qp. Moreover, for simplicity, let us assume that X and S are proper,
non-hyperelliptic hyperbolic curves. Indeed, these various conditions have nothing to do with
the essence of the proof, so the general case may be reduced immediately to the case which
one assumes that these conditions hold. Finally, in Theorem 5.1, a total three Hom’s appear,
but we shall concentrate on the map between the first and third Hom’s, since it is the most
essential of the various maps that appear. The problem then is how to reconstruct X from
π

(p)
1 (X) → Gal(K).
First, we let T

def= π
(p)
1 (XK)ab. Thus, if X is a curve of genus g, then T is a free Zp-module

of rank 2g, which also admits a natural structure of Gal(K)-module. Now as a consequence of
the oldest part of “p-adic Hodge theory,” which, in fact, goes back to Tate, if we denote the
p-adic completion of K by Cp, then we have a natural isomorphism:

(T ⊗Zp
Cp)Gal(K) ∼= DX

def= H0(X,ωX/K)
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where the left-hand side is the Gal(K)-invariant part of the module in parentheses, and the
right-hand side is the g-dimensional K-vector space consisting of all the everywhere-regular
differentials on X. Next, if we denote the projective space defined by DX by the notation
PX , then one knows from elementary algebraic geometry (by the assumption that X is non-
hyperelliptic) that X may be canonically embedded inside PX . In another words, we have
already succeeded in recovering completely group-theoretically from ρX the space PX , which
serves as a “canonical container” for our curve X. Thus, the problem that we must solve is
how to recover group-theoretically a certain special subvariety (namely, X) of PX .

At this point, we ask the reader to recall the analytic morphism φ : H → PX which appeared
in §4.2. As was discussed in detail in §4.2, this morphism is defined by constructing algebraic
differentials as analytic objects. Taking this as a hint, we would like to carry out an analogous
(in some sense) construction in the present p-adic situation. Thus, we must determine what
will take the place (in the p-adic case) of the upper half-plane H. In the proofs of [M2] and [M3],
the role of the upper half-plane is played by a certain field which is obtained by first completing
the function field of X at a p-adic valuation with certain “good properties,” then taking the
maximal tame extension of this completion, and finally, p-adically completing this maximal
tame extension. In the following, we shall denote this field17) by L. This field L is, just like the
finite extensions of Qp, a complete valuation field equipped with a p-adic valuation, but, unlike
finite extensions of Qp, it contains one “geometric dimension.” For instance, one manifestation
of this geometric dimension is the fact that the residue field of L is the maximal separated
extension of a function field in one variable over a finite field. Another important property
of L, which follows immediately from its definition, is that it admits a natural (tautological)
morphism

ξ : Spec(L) → X

Yet another remarkable property of this field L is that its isomorphism class does not depend
on the moduli of X. This property is reminiscent of the fact that the isomorphism class (as a
Riemann surface) of X̃ ∼= H does not depend on the moduli of X .

One more thing guaranteed by the existence of the geometric dimension of L is the property
that if one pulls back (by ξ) a nonzero differential on X to L to obtain a differential on
Spec(L), then this pulled-back differential will always be nonzero. Thus, the operation of
pulling back a differential on X to Spec(L) is a faithful operation, and, in fact, one may even
regard this pulled-back differential as a sort of “analytic presentation” of the original algebraic
differential. Relative to the analogy with the complex analytic case, this operation corresponds
to the operation of pulling back a differential on a compact (hyperbolic) Riemann surface X
to the upper half-plane H ∼= X̃ (where it has an “analytic presentation”).

Now we would like to return to the problem of reconstructing X as a subvariety of PX

group-theoretically. As a consequence of Faltings’ p-adic Hodge theory, any continuous ho-
momorphism α : Gal(L) → π

(p)
1 (X) (which satisfies certain weak, group-theoretic conditions)

defines a morphism
φα : Spec(L) → PX

over K. In other words, for “analytic L-rational points,” one obtains a p-adic analytic mor-
phism φα which is analogous to the morphism φ : H → PX that appeared in the complex
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analytic discussion of §4.2. The problem then is to determine what happens to the image of
the morphism φα. For instance, if α arises18) from a “geometric” L-rational point (i.e., element
of X(L)) like ξ, then the closure of the scheme-theoretic image of φα coincides precisely with
X. Thus,

if we can rewrite the condition “α arises geometrically” in terms in which, among
the various objects associated to X, only π

(p)
1 (X) → Gal(K) appears explicitly,

then the proof of Theorem 5.1 will be complete.
At this point, we make use of the following argument, which was inspired by the proof

of Tamagawa19). The homomorphism α defines a section αL : Gal(L) → π
(p)
1 (XL) of the

arithmetic fundamental group π
(p)
1 (XL) → Gal(L) of the curve XL obtained by base-changing

X from K to L. The image Im(αL) of this section homomorphism αL in π
(p)
1 (XL) forms a

closed subgroup of π
(p)
1 (XL) which is isomorphic to Gal(L). Thus, for each open subgroup

H ⊆ π
(p)
1 (XL) that contains this image, we obtain a finite étale cover Y H → XL. Here, Y H

is a hyperbolic curve which is geometrically connected over L. Moreover, it is important to
note that the “family of coverings” obtained by taking all the coverings {Y H → XL} which
arise in this way depends on α. Thus, one can formulate the following condition on the section
homomorphism αL which arises from the homomorphism α:

(∗) For every open subgroup H of π
(p)
1 (XL) which contains Im(αL),

the set of L-rational points Y H(L) of Y H is nonempty.

Let us suppose that this we know that this condition holds. If one then allows the open subgroup
H to vary in a suitable fashion, then, since Y H(L) �= ∅, the various points of Y H(L) map down
to points of XL(L). On the other hand, by applying the mod pN version of [F2], one sees that,
for each point of XL(L) which arises in this way, one can construct the mod pN version of the
preceding map φα; moreover, by using these maps, one can prove that the points of XL(L) that
arise in this way necessarily converge to a certain specific point x∞ ∈ XL(L). In fact, it also
follows immediately from this construction that the homomorphism Gal(L) → π

(p)
1 (X) that

arises from this point x∞ necessarily coincides with the original homomorphism α. In other
words, we have shown the geometricity of α. Thus, in summary, if we can just show that the
condition (∗) that we just imposed on αL is, in fact, purely “group-theoretic,” then the proof
of Theorem 5.1 will be complete.

The problem now is to find a “group-theoretic” criterion for the existence of an L-rational
point of Y H . In the present p-adic context, this problem is not amenable to a direct approach
of “counting the number of rational points” as in the finite field case treated by Tamagawa,
so one must resort to the following somewhat less direct argument. That is to say, instead of
thinking about L-rational points, one must consider the existence of line bundles (of degree
prime to p) which are rational over L. One reason for this is that line bundles define Chern
classes, hence can be regarded as classes in the étale cohomology of the curve Y H ; moreover,
the étale cohomology of a hyperbolic curve is naturally isomorphic to the group cohomology of
its arithmetic fundamental group, hence is an entirely “group-theoretic” object. Thus, we see
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that the problem boils down to giving a group-theoretic characterization of those classes inside
the relevant cohomology group that arise as the Chern classes of line bundles of degree prime
to p. This problem may be handled20) by applying the theory of the p-adic exponential map
of [BK]. In other words, unlike the case of L-rational points on Y H , L-rational line bundles
(of degree prime to p) admit a relatively straightforward group-theoretic existence criterion.
On the other hand, one sees easily from elementary algebraic geometry that once one knows
the existence of an L-rational line bundle of degree prime to p on Y H , one can conclude the
existence of an L-rational ample line bundle of degree prime to p on Y H . Thus, by writing this
line bundle as an effective divisor (which is étale over L), one sees that Y H admits a rational
point over an extension field of L whose degree (over L) is prime to p. On the other hand, since
such an extension field is necessarily a tame extension of L, and since, moreover, L, by its very
definition, does not have any nontrivial tame extensions, we thus conclude that Y H already
admits a rational point over L. In other words, the existence criterion for a line bundle as
above is automatically also an existence criterion for L-rational points. Thus, by establishing
this existence criterion, we see that we have completed the proof of Theorem 5.1.

Footnotes

1) A topological group which can be written as a projective limit of finite groups is called
a profinite group. Equivalently, a profinite group is a compact, totally disconnected Hausdorff
topological group.

2) For profinite groups, the open subgroups are the same as the closed subgroups of finite
index.

3) Recent work of Tamagawa has begun to illuminate the extent to which, in positive
characteristic, the geometric fundamental group depends quite essentially on the moduli of the
curve in question. See [H], as well as §3.3 of the present paper, for more details.

4) Grothendieck indicates that in addition to hyperbolic algebraic curves, successive smooth
fibrations of such curves, as well as moduli spaces of such curves should be considered as
candidates for anabelian varieties (cf., e.g., [M4]). Recent work suggests that as a necessary
condition for anabelianness, the geometric fundamental group should be more like a free group
than like a matrix group (see [IN]).

5) For instance, in the case of elliptic curves without complex multiplication, if one combines
various results of Faltings, one can argue that in fact, there is only one possibility (cf. [N6],
5.4).

6) If one writes K∞ for the field obtained by adjoining all roots of unity to the base field
K, then it is also conjectured that the sections arising from K-rational points of X may be
characterized as those such that the action of α(Gal(K∞)) on π1(XK) by conjugation does not
admit any nontrivial fixed points.

7) This suggests that Grothendieck had in mind the “category-theoretic ideal” of thinking
of X as a variable and reconstructing the set of X-rational points Y (X) = Hom(X,Y ) of Y
from the arithmetic fundamental group. The first person to (at least partially) realize this
ideal was Mochizuki ([M3]) — cf. §5.

8) The fact that distinct rational points induce nonconjugate section homomorphisms was
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shown by Grothendieck ([G3]) as an application of the Mordell-Weil Theorem. As an appli-
cation of this fact, one can show the algebro-geometric analogue of the “Sunada Conjecture”
of complex hyperbolic geometry for certain hyperbolic algebraic varieties (cf. [N5], [N7] 2.2).
Moreover, Mochizuki has derived a pro-p version of the fact that “distinct rational points define
nonconjugate section homomorphisms” from Theorem 5.1 (cf. [M3], Theorem C).

9) As far as this is concerned, one has the contributions of F.Pop ([P1,2]) and of Mochizuki
(cf. §5). Moreover, Pop’s work — including his method — builds on the long tradition of
research on the “reconstitution of a number field from its absolute Galois group,” starting with
the original ideas of J. Neukirch ([Ne]) in the late 1960’s, continuing with the work of M. Ikeda
and K. Iwasawa, and finally, culminating in the late 1970’s with the work of K. Uchida.

10) For a profinite group G, one refers to as the maximal pro-l quotient of G the largest
quotient topological group of G which may be written as a projective limit of finite l-groups
(i.e., finite groups whose order is a power of the prime number l).

11) As is implicit in the preface of [I1], Ihara began, from his own original point of view, the
construction of a nonabelian class field theory for modular function fields over finite fields in
the 1960’s, and, by the beginning of the 1970’s, had shown such things as the fact that among
the tame coverings of P1

λ − {0, 1,∞} over Fp2 , those which are controlled by the (congruence)
subgroups of SL2(Z[ 1p ]) may be characterized by the arithmetic condition of “complete de-
composition of the set of supersingular λ-primes.” This sort of research concerning the deep
arithmeticity contained in the fundamental group of the projective line minus three points
was spawn from Ihara’s original (nonabelian) class field theory point of view, hence is of a
completely different origin from Grothendieck’s motivation (discussed in §1.1) for constructing
an “algebro-geometric Galois theory.” Moreover, the paper of Deligne contained in [2] deals
with the issue of making the fundamental group of the projective line minus three points into a
unipotent algebraic group in the context of the philosophy of motives; this approach may also
be said to be of a distinct origin from those of Grothendieck and Ihara.

12) For the progress that occurred during this period, we refer mainly to [I2], as well as the
papers contained in [1].

13) Here, we shall refer to the natural one-dimensional l-adic representation Zl(1) arising
from the action of the Galois group on the roots of unity simply as the “cyclotomic action
(representation),” and we shall call the tensor product representation of this representation with
the permutation representation on the set of cuspidal points as the “cyclotomic permutation
representation.”

14) This is the conjecture to the effect that a curve of genus at least 2 over a number field
has only finitely many rational points. It was proven by Faltings in the same paper as the one
in which the Tate Conjecture was proven ([F1]).

15) In fact, another affirmative answer to this question, albeit of a somewhat different nature,
has also been obtained (cf. [M5-8] for more details).

16) In fact, the existence of the mysterious functor was also predicted by none other than
Grothendieck himself. On the other hand, as far as the relationship between these two conjec-
tures is concerned, there is no record that Grothendieck recognized — the general similarity
in form of the two conjectures notwithstanding — that this relationship was so close as to
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give rise to a proof of the sort that will be discussed in §5.2. Concerning the circumstances
surrounding this state of affairs, we refer to the discussion of §4.1.

17) In fact, if one takes this as the definition of L, the following argument becomes slightly
inaccurate, but in the interest of minimizing the introduction of inessential technical details,
we hope that the reader will forgive this minor transgression.

18) The phrase “arises from a geometric rational point Spec(L) → X” means that it arises
as the morphism Gal(L) = π1(Spec(L)) → π1(X) → π

(p)
1 (X) obtained by applying the functor

π1 to some morphism Spec(L) → X.
19) For more details, we refer to §3.1, (i).
20) For more details, we refer to [M3].
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